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Supplementary Note

Algorithm Details

SNPsea tests if genes implicated by risk loci (e.g., those discovered through genome-wide association (GWA)

studies) are specifically expressed in some conditions over others, and if this specificity is statistically signif-

icant. The program requires two inputs:

1. A list of SNP identifiers: rs123, 12:456, ...

2. A matrix of genes and conditions, such as:

· expression profiles of different cell types.

· Ontology terms and presence/absence 1/0 values for each gene in each term.

For example, SNPsea can be used to find tissues or cell types whose function is likely to be influenced by

genes in risk loci. If the genes in risk loci are used in relatively few cell types, we hypothesize that they are

likely to affect those cell types’ unique functions. This assumes that expression specificity is a good indicator

of a gene’s importance to the unique function of the cell type.

For a given set of SNPs associated to some phenotype, SNPsea tests whether all implicated genes, in aggre-

gate, are enriched for specificity to a condition in a user-provided matrix of genes and conditions/annotations.

The algorithm consists of three steps:

· Step 1: Assigning genes to each SNP

– We use linkage disequilibrium (LD) to identify the genes implicated by each SNP.

· Step 2: Calculating specificity scores

– We look up implicated genes in a user-provided matrix and calculate a specificity score for each

annotation/condition based on the values of these genes.

· Step 3: Testing significance

– We compare the specificity scores to a null distribution of scores obtained with random sets of

matched SNP sets and compute an empirical P -value.

Step 1: Assigning genes to each SNP

Accurate analyses must address the critical issue that SNPs frequently implicate a region with multiple

different genes (Supplementary Figure 2). The challenge is to find evidence to show which of those genes

are associated with a given trait.

We determine the genes plausibly implicated by each trait-associated SNP using a previously described

strategy (Supplementary Figure 1 and [1]). First, we define the linkage interval for a given SNP as the

span between the furthest correlated SNPs r2 > 0.5 (EUR) within a 1 Mb window [2]. Next, we extend

the interval to the nearest recombination hotspots with recombination rate >3 cM/Mb [3]. To address the

case when no genes overlap an interval, we provide an option for SNPsea to extend the interval up- and

downstream (by default 10 Kb).
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Most frequently, we find multiple genes (mk > 1) in a single SNP locus k. We expect many loci with

multiple genes because of regions with high LD across long stretches of a chromosome. Less frequently, a

locus has a single gene (mk = 1), and loci with no genes (mk = 0) are discarded.

After each SNP has been assigned an interval and a set of genes overlapping the interval, we merge SNPs

with shared genes into a single locus to avoid multiple-counting of genes.

Step 2: Calculating specificity scores

SNPsea uses different algorithms for matrices with continuous or binary values. By default, SNPsea as-

sumes one gene in each associated locus is associated with the given trait. We also include the option to

assume all genes within a locus are associated. We compare results of the two options with four phenotypes

(Supplementary Figure 4).

1. The ’--score single’ option (default) assumes that a single gene in each locus is associated with

the given phenotype. For each condition, we choose the gene in each locus with the greatest specificity

to that condition.

2. The ’--score total’ option assumes that all genes in a SNP’s linkage interval are associated. We

account for all linked genes when calculating scores.

Specificity for a matrix of continuous values Before running SNPsea, a matrix with continuous values

must be normalized so that columns are directly comparable. It is not appropriate to use this method on a

“raw” matrix of expression values.

We extend an approach we have previously described in detail [4]. Let A denote a continuous gene

expression matrix with m genes and n conditions. First, we normalize the expression of each gene by

dividing each value by the L2 norm of the gene’s values across all conditions.

A′i,j =
Ai,j√

A2
i,1 + A2

i,2 + · · ·+ A2
i,n

The resulting matrix A′ has values A′i,j between 0 and 1 indicating specificity of gene i to condition j. A

value A′i,j = 1 indicates that gene i is exclusively expressed in condition j, and A′i,j = 0 indicates that gene

i is not expressed in condition j.

Next, we transform A′ to a matrix A′′ of non-parametric condition-specificity percentiles as follows. For

each condition j, we rank the values of A′,j in ascending order and divide them by the number of genes

m, resulting in percentiles between 0 and 1 where a lower value indicates greater specificity to the given

condition.

A′′i,j =
Rankj(A

′
i,j)

m

Locus scores for a matrix of continuous values We create a new matrix P , where each value Pk,j

is a score for a SNP locus k and a condition j. We define the locus scores P,j for a single condition j to

be approximately uniformly distributed for a set of randomly selected loci under the null hypothesis of no

association to the condition. We make the assumption that, for a set of genes in a given SNP locus Ik,
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the values A′′i∈Ik,j are random, independent, and approximately uniformly distributed. If there is an actual

association to a condition j, we will observe an unexpectedly small value for P,j .

’--score single’ (default) This approach tests for the association of one gene in each SNP locus

to condition j.

For each locus-condition pair (k, j), we choose the single gene i in locus k with greatest specificity to

condition j among the mk genes in the locus, as previously described in Hu et al. [4]. Let gk denote this

most specific gene, so that A′′gk,j = Mini∈Ik(A′′i,j) where Ik denotes the set of genes in locus k. If we assume

values of A′′i∈Ik,j are uniformly distributed for a given condition j and genes i ∈ Ik, then the probability to

randomly draw a value equal to or less than A′′gk,j is as follows:

Pk,j = 1− (1−Mini∈Ik(A′′i,j))
mk

’--score total’ This approach tests for the association of all genes in each SNP locus to condition

j — we consider this model to be unlikely in most situations. The product (log sum) of uniform values

between (0,1) follows a gamma distribution [5]. If the genes Ik have no specificity to a condition j, then the

values A′′i∈Ik are approximately uniformly distributed. So, we compute the probability to randomly draw

values A′′i∈Ik with a smaller product as the upper tail of the gamma distribution:

Pk,j =

ˆ ∞
x

Γ(mk, 1) for x =
∑
i∈Ik

−lnA′′i,j

Locus scores for a matrix of binary values Let B denote a binary matrix (1=present, 0=absent)

with m genes and n conditions. Let mj denote the number of genes present in condition j. Let mk denote

the number of genes in locus k and mk,j ≤ mk denote the number of genes in locus k that are present in

condition j.

We provide two options to calculate locus scores. By default, we account for presence or absence of any

of the mk genes in condition j, as shown below (’--score single’). Alternatively, we account for the

number of genes in a given locus (’--score total’).

’--score single’ ’--score total’

p(x) =

(
mj

x

)(
m−mj

mk−x
)(

m
mk

) Pk,j =

1− p(0) mk,j > 0

1 mk,j = 0
Pk,j =

1−
∑mk,j−1

x=0 p(x) mk,j > 0

1 mk,j = 0

Condition specificity scores For both continuous and binary matrices, we define a specificity score Sj

for each condition j as the aggregate of Pk,j values across SNP loci:

Sj =
∑
k

−logPk,j
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Step 3: Testing significance

Analytical p-values We previously found that aggregating the Pk,j scores and determining a P -value

analytically from a distribution results in inaccurate p-values [4]. A′′i,j values may be relatively uniform

genome-wide, but proximate genes often have shared functions. The genome has a complex correlation

structure of linkage disequilibrium, gene density, gene size and function that is challenging to model analyt-

ically. We use the sampling strategy described below instead.

Permutation p-values For each condition, we use a sampling approach to calculate an empirical p-value.

This is the tail probability of observing a condition-specificity score greater or equal to Sj . We obtain the

distribution empirically with null SNP sets.

We compute specificity scores S for random SNP sets. Each SNP in a null set is matched to a SNP in

the user’s set on the number of linked genes. To adequately sample genes from the entire genome, we sample

SNP sets from a list of LD-pruned SNPs (subset of SNPs in 1000 Genomes Project) [6].

For each condition j, we calculate an exact permutation p-value [7]. Let aj denote the number of sampled

SNP sets (e.g. 10,000) and let bj denote how many null specificity scores are greater than or equal to the

user’s score Sj :

pj =
bj + 1

aj + 1

We implemented adaptive sampling to calculate p-values efficiently. As each condition is tested for

significance, we increase the number of iterations to resolve significant p-values and save computation by

using fewer iterations for less significant p-values. Two options allow the user to control the adaptive

sampling:

1. ’--max-iterations N’ The maximum number of iterations for each condition. We stop testing a

condition after sampling N SNP sets.

2. ’--min-observations N’ The minimum number of observed null specificity scores greater than

or equal to Sj required to stop sampling SNP sets for a condition j.

Data

Please find the data required to reproduce this analysis here: http://dx.doi.org/10.6084/m9.figshare.871430

Gene Atlas gene expression matrix

We downloaded the data from BioGPS: http://plugins.biogps.org/download/gnf1h-gcrma.zip

We averaged the expression values for tissue replicates. For each gene, we selected the single probe with

the largest minimum value. Finally, we converted the file to GCT format.

Gene Ontology binary presence/absence matrix

We downloaded the OBO file from Gene Ontology (data-version: 2013-06-29, CVS revision: 9700):

http://www.geneontology.org

For each gene, we climbed the hierarchy of ontology terms and applied parental terms. If a gene is

annotated with some term T , we also add all of the terms that are parents of T . We copy terms between
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homologous genes using Homologene data (http://www.ncbi.nlm.nih.gov/homologene). If a mouse gene is

annotated with some term and the human homolog is not, then we copy the term to the human gene. We

discard all GO terms assigned to fewer than 100 or to more than 1000 genes. This leaves us with a matrix

of 19,111 genes and 1,751 terms.

1000 Genomes Project

We downloaded a filtered (diallelic and 5 or more copies of the minor allele) set of markers from the BEAGLE

website and calculated pairwise LD (EUR) for all SNPs in a 1 Mb sliding window:

http://bochet.gcc.biostat.washington.edu/beagle

Commands

More details: http://www.broadinstitute.org/mpg/snpsea/SNPsea manual.html
Analysis Figures

snpsea

--snps HDL_Teslovich2010.txt

--gene-matrix GeneAtlas2004.gct.gz

--gene-intervals NCBIgenes2013.bed.gz

--snp-intervals TGP2011.bed.gz

--null-snps Lango2010.txt.gz

--score single

--out <out>

--slop 10e3

--threads 2

--null-snpsets 0

--min-observations 100

--max-iterations 1e6

Horizontal bar plot of p-values:

snpsea-barplot <out>

Heatmap of conditions and loci:

snpsea-heatmap <out>

Type 1 error rates for each condition:

snpsea-type1error <out>
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Supplementary Figures

Supplementary Figure 1: Determining SNP linkage intervals

1.0

0.5

1. For each SNP, find neighbors with R^2 >= 0.5 within a 1 Mb window.

Gene A Gene B

1.0

0.5

2. Extend to nearest recombination hotspots with rate > 3 cM / Mb.

R2

R2

Gene A Gene B

We calculated r2 values for all pairs of SNPs within a 1 Mb sliding window along each chromosome.

Next, we assigned each of the SNPs from The 1000 Genomes Project Phase I [2] to a linkage interval by

identifying each SNP’s furthest upstream and downstream neighbors with r2 ≥ 0.5. Finally, we extended

each interval to recombination hotspots reported by HapMap [3] with recombination rate >3 cM/Mb.
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Supplementary Figure 2: Counting genes in GWAS SNP linkage intervals
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A cumulative density plot of the number of genes overlapped by the linkage intervals of GWAS SNPs.

We downloaded the GWAS Catalog SNPs on January 17, 2014 and selected the 11,561 SNPs present in the

1000 Genomes Project [2]. Of these SNPs, 2,119 (18%) of them have linkage disequilibrium (LD) intervals

that overlap no genes, and 3,756 (32%) overlap a single gene. The remaining 50% of SNPs overlap 2 or more

genes. This illustrates the critical issue that many SNPs implicate more than one gene.
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Supplementary Figure 3: Choosing the r2 threshold for linkage intervals
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Gene Atlas and Gene Ontology (top and bottom). Each subplot has −log10P for r2 = 1 on the x-axis

and −log10P on the y-axis for the r2 threshold marked above. Grey lines are significance thresholds after

correction testing multiple conditions (cell types, GO annotations). Black points are significant and grey are

not. We used the ’--score single’ option. Red blood cell count SNPs are enriched for hemopoiesis

(GO:0030097) (P = 2 × 10−5) for linkage intervals with r2 = (0.6, 0.8, 1.0). This result falls below the

multiple testing threshold at r2 ≥ 0.4, but remains significant at r2 ≥ 0.5 (see main text).

To investigate if the choice of r2 threshold influences SNPsea results, we repeated the analysis of four

traits using 5 different thresholds (r2 ≥ 0.2, 0.4, 0.6, 0.8, 1.0). SNPsea results seem to be robust to the

choice of threshold, mostly due to the fact that we extend linkage intervals for each SNP to the nearest

recombination hotspots as described in Supplementary Figure 1. We chose to use r2 ≥ 0.5 for our

analysis and for our provided data files due to this result, and also due to previous experience [1].
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Supplementary Figure 4: Comparison of ’single’ and ’total’ options

Quantile-quantile plots for Gene Atlas [8] and Gene Ontology (top and bottom). The x and y axes are

−log10P for ’--score single’ and ’--score total’ SNPsea options, respectively. The ’single’

and ’total’ methods are described on page 3. The P -values appear similar between methods.
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Supplementary Figure 5: Type 1 error estimates
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P < 0.5

P < 0.1

P < 0.05

P < 0.01

P < 0.005

Proportion of p−values below each threshold for
10000 random sets of SNPs

We sampled 10,000 sets of 100 SNPs uniformly from a list of LD-pruned SNPs [6]. We tested each of

the 10,000 sets for enrichment of tissue-specific expression in the Gene Atlas [8] gene expression matrix

(top) and for enrichment of annotation with Gene Ontology terms (bottom). For each condition, we show

the proportion of the 10,000 enrichment p-values that are below the given thresholds. We observe that the

p-values are near the expected values, so the type 1 (false positive) error rate is well-calibrated.
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Additional Examples

We tested SNPsea with the three additional phenotypes listed below with genome-wide significant SNPs

(P ≤ 5 × 10−8). When multiple SNPs implicated the same genes, we merged them into a single locus. We

tested each phenotype with the Gene Atlas and GO matrices with the ’--score single’ option. Below

we show the number of significantly enriched conditions we found for each phenotype.

Phenotype SNPs Loci GO Gene Atlas Reference

Red blood cell count 45 45 1 1 Table 1 van der Harst, et al. 2012 [9]

Multiple sclerosis 51 47 52 6 Supp. Table A IMSGC WTCCC 2011 [10]

Celiac disease 35 34 28 3 Table 2 Trynka, et al. 2011 [11]

HDL cholesterol 46 46 13 1 Supp. Table 2 Teslovich, et al. 2010 [12]
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Supplementary Figure 6: Red blood cell count GO enrichment
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−log10 P

GO:0042113 B cell activation
* GO:0030097 hemopoiesis
GO:0048534 hematopoietic...mphoid organ development
GO:0002520 immune system development
GO:0030217 T cell differentiation
GO:0042110 T cell activation
GO:0045321 leukocyte activation
GO:0046649 lymphocyte activation
GO:0002521 leukocyte differentiation
GO:0030098 lymphocyte differentiation
GO:0006631 fatty acid metabolic process
GO:0034440 lipid oxidation
GO:0032844 regulation of homeostatic process
GO:0048872 homeostasis of number of cells
GO:1902107 positive regu...eukocyte differentiation
GO:1901659 glycosyl comp...und biosynthetic process
GO:0006812 cation transport
GO:0055072 iron ion homeostasis
GO:0055080 cation homeostasis
GO:0071495 cellular resp...e to endogenous stimulus
GO:0032870 cellular response to hormone stimulus
GO:0007568 aging
GO:0031667 response to nutrient levels
GO:0045787 positive regulation of cell cycle
GO:0071902 positive regu...hreonine kinase activity

Red_blood_cell_count-Harst2012-45_SNPs_GO2013_single

We observed significant enrichment for hemopoiesis (2× 10−5). The top 25 terms are shown.
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Supplementary Figure 7: Multiple sclerosis
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Atrioventricular Node
Bronchial Epithelial cells
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Fetal Lung
Lung
* Whole Blood
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BM-CD33+Myeloid
Thymus
Lymph Node
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Lymphoma Burkitts Raji
721 B Lymphoblasts
BM-CD34+
Lymphoma Burkitts Daudi
Leukemia Chronic Myelogenous(k562)
Leukemia Lymphoblastic(molt4)
* PB-CD19+B cells
* PB-CD8+T cells
* PB-CD4+T cells
* PB-CD56+NK cells
PB-BDCA4+Dentritic cells
Testis
Bone Marrow

Multiple_sclerosis-IMSGC-51_SNPs_GeneAtlas2004_single

We observed significant enrichment for 6 cell types. The top 25 of 79 are shown.
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* GO:0051249 regulation of lymphocyte activation
* GO:0050865 regulation of cell activation
* GO:0002694 regulation of leukocyte activation
* GO:0051251 positive regu...of lymphocyte activation
* GO:0050867 positive regu...ation of cell activation
* GO:0002696 positive regu... of leukocyte activation
* GO:0050863 regulation of T cell activation
* GO:0050870 positive regu...ion of T cell activation
GO:0070665 positive regu... leukocyte proliferation
* GO:0050671 positive regu...lymphocyte proliferation
* GO:0032946 positive regu...clear cell proliferation
* GO:0042129 regulation of T cell proliferation
* GO:0070663 regulation of leukocyte proliferation
* GO:0050670 regulation of...lymphocyte proliferation
* GO:0032944 regulation of...clear cell proliferation
GO:0045619 regulation of...mphocyte differentiation
* GO:1902105 regulation of...eukocyte differentiation
GO:1902107 positive regu...eukocyte differentiation
* GO:0002683 negative regu...of immune system process
* GO:0001817 regulation of cytokine production
* GO:0002822 regulation of...ulin superfamily domains
* GO:0002819 regulation of...adaptive immune response
* GO:0002697 regulation of immune effector process
* GO:0002699 positive regu... immune effector process
* GO:0002703 regulation of...kocyte mediated immunity
* GO:0002684 positive regu...of immune system process
* GO:0050776 regulation of immune response
* GO:0002252 immune effector process
* GO:0002366 leukocyte act...olved in immune response
* GO:0002263 cell activati...olved in immune response
* GO:0002520 immune system development
* GO:0030097 hemopoiesis
* GO:0048534 hematopoietic...mphoid organ development
GO:0042113 B cell activation
* GO:0001775 cell activation

* GO:0045321 leukocyte activation
* GO:0046649 lymphocyte activation
* GO:0030098 lymphocyte differentiation
* GO:0002521 leukocyte differentiation
* GO:0042110 T cell activation
* GO:0030217 T cell differentiation

* GO:0009617 response to bacterium
* GO:0051707 response to other organism
* GO:0009607 response to biotic stimulus
GO:0071396 cellular response to lipid
* GO:0002237 response to m...cule of bacterial origin
* GO:0032496 response to lipopolysaccharide
* GO:0071216 cellular response to biotic stimulus
* GO:0071222 cellular resp...se to lipopolysaccharide
* GO:0071219 cellular resp...cule of bacterial origin
GO:0019048 virus-host interaction
GO:0051701 interaction with host

* GO:0019221 cytokine-mediated signaling pathway
* GO:0071345 cellular resp...nse to cytokine stimulus
* GO:0034097 response to cytokine stimulus
* GO:0002761 regulation of...eukocyte differentiation
GO:0045637 regulation of...oid cell differentiation
* GO:0031348 negative regu...tion of defense response
* GO:0046425 regulation of JAK-STAT cascade
* GO:0009897 external side of plasma membrane

Multiple_sclerosis-IMSGC-51_SNPs_GO2013_single

We observed significant enrichment for 52 Gene Ontology terms. The top 60 terms are shown.
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Supplementary Figure 8: Celiac disease
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Trachea
Whole Blood
PB-CD14+Monocytes
BM-CD33+Myeloid
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Lymph Node
Tonsil
PB-CD19+B cells
* PB-CD4+T cells
* PB-CD8+T cells
* PB-BDCA4+Dentritic cells
PB-CD56+NK cells
Leukemia Chronic Myelogenous(k562)
721 B Lymphoblasts
Lymphoma Burkitts Raji
Lymphoma Burkitts Daudi
Fetal Brain
Colorectal Adenocarcinoma
Bronchial Epithelial cells
Fetal Lung
Lung
Prostate
Thyroid
Amygdala
BM-CD71+Early Erythroid

Celiac_disease-Trynka2011-35_SNPs_GeneAtlas2004_single

We observed significant enrichment for 3 cell types. The top 25 of 79 are shown.
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* GO:0051249 regulation of lymphocyte activation
* GO:0002694 regulation of leukocyte activation
* GO:0050865 regulation of cell activation
* GO:0002696 positive regu... of leukocyte activation
* GO:0050867 positive regu...ation of cell activation
* GO:0050863 regulation of T cell activation
* GO:0050870 positive regu...ion of T cell activation
GO:0070665 positive regu... leukocyte proliferation
GO:0032946 positive regu...clear cell proliferation
GO:0050671 positive regu...lymphocyte proliferation
* GO:0042129 regulation of T cell proliferation
* GO:0070663 regulation of leukocyte proliferation
* GO:0032944 regulation of...clear cell proliferation
* GO:0050670 regulation of...lymphocyte proliferation
* GO:0030097 hemopoiesis
* GO:0048534 hematopoietic...mphoid organ development
* GO:0002520 immune system development
* GO:0030217 T cell differentiation

* GO:0030098 lymphocyte differentiation
* GO:0002521 leukocyte differentiation
* GO:0001775 cell activation
* GO:0042110 T cell activation

* GO:0046649 lymphocyte activation
* GO:0045321 leukocyte activation
* GO:0019221 cytokine-mediated signaling pathway
* GO:0034097 response to cytokine stimulus
* GO:0071345 cellular resp...nse to cytokine stimulus
* GO:0050714 positive regu...ion of protein secretion
* GO:0009897 external side of plasma membrane
GO:0050727 regulation of inflammatory response
GO:0031347 regulation of defense response
* GO:0042035 regulation of...ine biosynthetic process
* GO:0001817 regulation of cytokine production
* GO:0002684 positive regu...of immune system process
* GO:0050776 regulation of immune response
GO:0050778 positive regu...ation of immune response
* GO:0002683 negative regu...of immune system process
* GO:0002697 regulation of immune effector process
* GO:0002822 regulation of...ulin superfamily domains
* GO:0002819 regulation of...adaptive immune response

Celiac_disease-Trynka2011-35_SNPs_GO2013_single

We observed significant enrichment for 28 Gene Ontology terms. The top 40 terms are shown.
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Supplementary Figure 9: HDL cholesterol
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* Liver
Skeletal Muscle
DRG
Atrioventricular Node
Adrenal Cortex
Adrenal Gland
Olfactory Bulb
Caudate Nucleus
Spinal Cord
Fetal Thyroid
Fetal Lung
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Fetal Liver
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HDL_cholesterol-Teslovich2010-46_SNPs_GeneAtlas2004_single

We observed significant enrichment for liver tissue-specific gene expression. The top 25 of 79 are shown.
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GO:0032496 response to lipopolysaccharide
GO:0002237 response to m...cule of bacterial origin
* GO:0006721 terpenoid metabolic process
GO:0006720 isoprenoid metabolic process
GO:0009584 detection of visible light
GO:0007602 phototransduction
GO:0030139 endocytic vesicle
GO:0030666 endocytic vesicle membrane
GO:0046434 organophosphate catabolic process
GO:0006898 receptor-mediated endocytosis
* GO:0006638 neutral lipid metabolic process
* GO:0006639 acylglycerol metabolic process
* GO:0006644 phospholipid metabolic process
* GO:0046486 glycerolipid metabolic process
GO:0006066 alcohol metabolic process
* GO:0008202 steroid metabolic process
* GO:0016125 sterol metabolic process
* GO:0008203 cholesterol metabolic process
* GO:0055088 lipid homeostasis
* GO:0015850 organic hydroxy compound transport
* GO:0006869 lipid transport
* GO:0010876 lipid localization
* GO:0042157 lipoprotein metabolic process
* GO:0008289 lipid binding
GO:0016042 lipid catabolic process

HDL_cholesterol-Teslovich2010-46_SNPs_GO2013_single

We observed significant enrichment for 13 Gene Ontology terms. The top 25 terms are shown.
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